Code: CS3T4

II B.Tech - I Semester – Regular/Supplementary Examinations November - 2018

FORMAL LANGUAGES AND AUTOMATA THEORY (COMPUTER SCIENCE & ENGINEERING)

Duration: 3 hours Max. Marks: 70

PART - A

Answer *all* the questions. All questions carry equal marks 11x 2 = 22 M

1.

- a) Define String and Language.
- b) Distinguish between Moore and Mealy machine.
- c) Construct Finite Automata for the regular expression (a+b)*.
- d) What is the principle involved in pumping lemma for regular sets?
- e) Differentiate left linear and right linear grammar.
- f) Write the CFG for balanced parenthesis.
- g) Define Chomsky Normal Form (CNF) grammar.
- h) What are the different ways to accept strings with PDA?
- i) What is an ID of a Turing machine?
- j) Define Universal Turing machine.
- k) What is decidability problem?

PART - B

Answer any *THREE* questions. All questions carry equal marks. $3 \times 16 = 48 \text{ M}$

2. a) Construct DFA for $L = \{w \mid w \text{ is a binary string divisible by 5}\}.$

b) Convert the following NFA into its equivalent DFA. 8 M

	0	1
→p	p, q	p
q	r, s	t
r	p, r	t
*s	p, r Ф	Ф
*t	Ф	Ф

3. a) Construct finite automata for the regular expression (0/1)*(111)(0/1)*. 8 M

b) Find the regular expression generated by the following Finite Automata. 8 M

Page 2 of 3

4. a) Define GNF grammar and convert the following CFG into its equivalent GNF

 $S \rightarrow AB$ $A \rightarrow BS/b$ $B \rightarrow SA/a$

8 M

b) Construct PDA for the grammar having productions and Check the string "010000" is accepted or not?

 $S \rightarrow 0AA$ $A \rightarrow 0S / 1S / 0$

8 M

5. a) Design a Turing machine for the language

 $L = \{ a^n b^n c^n | n \ge 1 \}$

8 M

b) Discuss in detail Church's hypothesis.

8 M

- 6. a) Define PCP and find whether the lists X = (01, 101, 11000)and Y = (0, 10, 101) have a Post Correspondence Solution? 8 M
 - b) Differentiate P and NP problems with suitable examples.

8 M